On the Noise-Information Separation of a Private Principal Component Analysis Scheme

نویسندگان

  • Mario Diaz
  • Shahab Asoodeh
  • Fady Alajaji
  • Tamás Linder
  • Serban Teodor Belinschi
  • James A. Mingo
چکیده

In a survey disclosure model, we consider an additive noise privacy mechanism and study the trade-off between privacy guarantees and statistical utility. Privacy is approached from two different but complementary viewpoints: information and estimation theoretic. Motivated by the performance of principal component analysis, statistical utility is measured via the spectral gap of a certain covariance matrix. This formulation and its motivation rely on classical results from random matrix theory. We prove some properties of this statistical utility function and discuss a simple numerical method to evaluate it.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faults and fractures detection in 2D seismic data based on principal component analysis

Various approached have been introduced to extract as much as information form seismic image for any specific reservoir or geological study. Modeling of faults and fractures are among the most attracted objects for interpretation in geological study on seismic images that several strategies have been presented for this specific purpose. In this study, we have presented a modified approach of ap...

متن کامل

A Fault Diagnosis Method for Automaton based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Fault Diagnosis Method for Automaton Based on Morphological Component Analysis and Ensemble Empirical Mode Decomposition

In the fault diagnosis of automaton, the vibration signal presents non-stationary and non-periodic, which make it difficult to extract the fault features. To solve this problem, an automaton fault diagnosis method based on morphological component analysis (MCA) and ensemble empirical mode decomposition (EEMD) was proposed. Based on the advantages of the morphological component analysis method i...

متن کامل

A Critique on Power Spectrum – Area Fractal Method for Geochemical Anomaly Mapping

Power spectrum – area fractal (S-A fractal) method has been frequently applied for geochemical anomaly mapping. Some researchers have performed this method for separation of geochemical anomaly, background and noise and have delineated their distribution maps. In this research, surface geochemical data of Zafarghand Cu-Mo mineralization area have been utilized and some defects of S-A fractal me...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.03553  شماره 

صفحات  -

تاریخ انتشار 2018